翻訳と辞書
Words near each other
・ Pöndorf
・ Pöpel
・ Pöppelmann
・ Pöppelsche
・ Pörböly
・ Pördefölde
・ Pörhölä
・ Pörkölt
・ Pörmitz
・ Pörnbach
・ Pörtom
・ Pörtschach am Wörthersee
・ Pöschel Equator
・ Pöschendorf
・ Pöschl
Pöschl–Teller potential
・ Pösgraben
・ Pösing
・ Pöstlingberg
・ Pöstlingbergbahn
・ Pötenitzer Wiek
・ Pötréte
・ Pötschen Pass
・ Pötschenkalk
・ Pöttelsdorf
・ Pötting
・ Pöttmes
・ Pöttsching
・ Pöttyös utca (Budapest Metro)
・ Pötzschau


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pöschl–Teller potential : ウィキペディア英語版
Pöschl–Teller potential
In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl〔("Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in ''Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller'', World Scientific, 2010. )〕 (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.
==Definition==

It is explicitly given by
:
U(x) =-\frac\mathrm^2(x)

and the solutions of the time-independent Schrödinger equation
:
-\frac\psi''(x)+ U(x)\psi(x)=E\psi(x)

with this potential can be found by virtue of the substitution u=\mathrm, which yields
:
\left()'+\lambda(\lambda+1)\psi(u)+\frac\psi(u)=0
.
Thus the solutions \psi(u) are just the Legendre functions P_\lambda^\mu(u) with E=\frac. Moreover, eigenvalues and scattering data can be explicitly computed.〔Siegfried Flügge ''Practical Quantum Mechanics'' (Springer, 1998)〕 In the special case of integer \lambda, the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg-de Vries equation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pöschl–Teller potential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.